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Abstract

A theory of stepwise elution chromatography was developed on the basis of a
continuity equation for a simplest case of linear chromatography with small sample
loads. Longitudinal diffusions taken into consideration are limited to both thermal
Brownian diffusion occurring in the mobile phase and diffusion caused by the flow
heterogeneity. However, account is taken of the existence of the column top, where
longitudinal Brownian diffusion can be assumed to occur associated with a diffusion
that is provoked by a type of flow heterogeneity. This paper provides a fundamental
theory that was necessary for the earlier development of the theory of gradient

hydroxyapatite chromatography.

INTRODUCTION

Theories of chromatography on the basis of a continuity equation were first
developed over 40 years ago by Wilson (1), DeVault (2), and Weiss (3) for
stepwise chromatography. In these theories, both assumptions of (a)
instantaneous equilibrium of mobile and stationary phases and (b) no
longitudinal diffusion in the column are involved; the two assumptions are
intimately related (/-3). Theories in which account is taken of longitudinal
molecular diffusion were developed later by a number of authors (4-14).
However, longitudinal diffusion that was mainly investigated in these

*The terminology “stepwise’” can, of course, be applied to the special case where the
development of the solute is carried out on the column by using the same solvent as that of the

sample solution that was initially loaded.
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theories is a type of diffusion that would occur provided that the transit rate of
a molecule is finite through an energetical barrier that presumably lies
between the mobile and stationary phases in chromatography. As a typical
example that would be explainable by this diffusion, Bak (9) refers to the
asymmetrical shape of the chromatographic spot occurring in paper chro-
matography which, in general, is more extended in the migration direction.

It can be assumed, however, that this type of diffusion is negligible if the
flow rate of chromatography is small in comparison with the transit rate of
the molecule through the energetical barrier. This can, in fact, be deduced to
be the case (at least) with hydroxyapatite (HA) adsorption chromatography,
where no deformation of the chromatogram or the change in elution position
is observed when the flow rate is changed (15).

In the present theory, longitudinal diffusions taken into account are limited
to (a) thermal Brownian diffusion occurring in the mobile phase and (b)
diffusion due to the flow heterogeneity occurring in each vertical section of
the column. [Diffusion due to the flow heterogeneity is a concept that is
intimately related to the concept of ““eddy diffusion.”” Here, we avoid the use
of this terminology, however (I5).] Diffusion that might occur in the
stationary phase in the case of absorption chromatography (see, for instance,
ref. 10) is not taken into consideration. We also limit ourselves within the
case of “linear” chromatography with small sample loads when a narrow
band of molecules is formed initially at the top of the column. The
assumptions that are involved in the present theory are summarized in
Theoretical Section A.

The main purpose of the present work consists in proposing (under the
assumptions in Theoretical Section A) an initial boundary condition to the
fundamental continuity equation of chromatography which would fit the
actual situation where a narrow molecular band is formed initially at the top
of the column, Account is taken of the existence of a column top where
longitudinal Brownian diffusion can be assumed to occur associated with a
diffusion that is provoked by a type of flow heterogeneity (see Theoretical
Section A). Intuitively, it might be assumable that the inital condition to the
fundamental continuity equation can approximately be described (a)
replacing the actual column by a hypothetical column with inifinite length
that extends upward beyond the top of the column, and (b) representing the
initial molecular band occurring at the column top in terms of a delta function
that has a value only at a given longitudinal position on the infinite column
(see Ref. 15, Appendix III); this type of assumption, in fact, is involved
explicitly or implicitly in the chromatographic theories (4—1/4). From this
assumption, however, an unreasonable general conclusion is attained that a
part of the molecular band should be leaking upward beyond the column top
in early stages of the development process (Ref. 15, Appendix III). Further,
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the relationship between the shape of the molecular band migrating on the
hypothetical infinite column and the elution chromatogram obtained for the
actual column with finite length (with the bottom as well as the top) is unclear
except for the special case when the longitudinal molecular diffusion in the
column is provoked essentially only by the flow heterogeneity (Ref. 15,
Appendix IIIL; cf. Remark 1 in Theoretical Section A).

In earlier papers (/5-18) a theory of gradient HA chromatography was
developed. In this theory the assumption of the delta function occurring
initially on the infinite column (see above) is also involved. In contrast with
stepwise chromatography, with gradient chromatography it is impossible for
a chromatographic process to be described on the basis of a continuity
equation for the actual molecular flux occurring on the column itself; it is an
abstract flux occurring on the gradient that is fundamental (/7). As a result,
the assumption of the delta function on the infinite column leads to a different
unreasonable conclusion from that attained with stepwise chromatography
(see above); a limit of the application of this assumption to gradient
chromatography was discussed (I8). In Refs. /9 and 20 it was shown
that the initial boundary condition to the continuity equation for stepwise
chromatography that is proposed in the present paper can be applied with
modifications to the abstract continuity equation for gradient chromotog-
raphy. A second purpose of the present work is to provide a fundamental
theory that was necessary for further developing the earlier theory of gradient
HA chromatography (15-18) to the new theory (/9, 20). Therefore,
terminologies that are adequate only to HA chromatography are often used.
Nevertheless, the present theory is valid for wider chromatographies.

THEORETICAL

A. First Principle and Fundamental Assumptions

Coexistences of mobile and stationary phases in the column are a
necessary condition for chromatography. Under this condition, a first
principle of chromatography is realized that, within a vertical section at any
longitudinal position L on the column, the ratio Ry of the migration rate of the
molecules (of the chromatographic component under consideration) to that of
the solvent, on average, is equal to the partition B of the molecules in the
mobile phase. The average is taken for all molecules under consideration that
pass the column section during the whole process of chromatography. This
principle can also be stated in such a way that, provided the column is long
enough for the total molecular band to exist on it at the same time, then at any
instant ¢, the mean relative migration rate Ry, of the band is equal to the
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partition B in solution concerning all molecules that constitute the total
band. Ry and B are equal to R, and B occurring at the mean part of the band,
respectively; at this part, Rr(= Ry) is equal to B(= B). (Cf. Ref. 10 and
Remark 1 below.)

Let us introduce the following assumptions. (a) Molecular diffusion can
occur only in the interstitial liquid in the column or the mobile phase. (b) The
pore volume a per unit column length is macroscopically constant; as a
result, at a given instant ¢, the mean flow rates of the solution are equal to one
another among any different vertical column sections. (¢) The mean flow rate
is also constant with respect to time ¢. (d) Due to microscopical heterogeneity
in interspaces among crystals packed in the column, however, flow
heterogeneity, in general, does occur in the column. Therefore, the longi-
tudinal diffusion in the column, in general, is the addition of two types of
diffusion: thermodynamic diffusion and diffusion provoked by the flow
heterogeneity. Thermodynamic diffusion is defined as any diffusion occur-
ring, provided there is no flow heterogeneity. Under Assumption (g) below,
however, thermodynamic diffusion is identical with the diffusion occurring
caused by a thermal Brownian motion of molecules in solution. Now, if the
column is divided into a number of parallel hypothetical columns with
diameters of the order of magnitude of the interdistances among the crystals
being packed, the flow heterogeneity would be classifiable into two types.
Thus, when caused by the heterogeneity in interspaces among packed
crystals, the flow rate would fluctuate at random not only among different
longitudinal positions on the same microcolumn but also among parts of
different microcolumns existing within the same vertical section of the total
column; this brings about the first type of flow heterogeneity. Due to a
viscous property of the solution, however, it might be possible that the flow
rate in an interstice in the column depends upon the distance from the crystal
surface. Therefore, even within a microcolumn, flow heterogeneity is realiz-
able (the second type of flow heterogeneity). (e) The effect of the second type
of flow heterogeneity, if it occurs, is so small that it does not virtually provoke
heterogeneity in molecular density in the interstice between the crystals.
Nevertheless, the movement of the molecules in an interstice in the column, in
general, is disturbed by the second type of flow heterogeneity. Under this
hypothesis, it is impossible to distinguish chromatographically the molecular
diffusion occurring caused by the second type of flow heterogeneity from
thermal Brownian diffusion; the addition of the two diffusions would behave
as an element of the chromatographic mechanism (cf. Remarks 2 below). (f)
The average time that is necessary for a molecule to traverse the inter-
distance d between crystals in the column by thermal Brownian diffusion
(to which the effect of the second type of flow heterogeneity is added) is much
shorter than that necessary for it to move the same distance with a rate that is
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equal to the mean flow rate, | v,! , of the solvent (occurring in the longitudinal
direction of the column). (g) The time averages that are necessary for a
molecule to transit the energetical barriers from the mobile to the stationary
phase and from the latter to the former (cf. Introduction Section) also are
much shorter than the time necessary for it to move distance d with the rate
equal to ' vy| . Under this assumption, thermodynamic diffusion is identical
with thermal Brownian diffusion (cf. Ref /5, Discussion Section). (h) Both
energetical and geometrical interactions among sample molecules are
negligible; chromatography is “linear,” and the behavior of the molecular
component under consideration is independent of the behaviors of the other
components in the mixture. Under Assumptions (e)—(h), the partition B of
molecules in solution is constant for any vertical column section; B s
constant also with respect to time ¢, and it is equal to the mean partition B.
(i) A minute volume of the sample solution that is smaller than, or equal to,
the critical volume AL’ (see Section B) is initially loaded at the top of the
column; at the beginning of the development process the sample also
occupies a volume that is smaller than, or equal to, AL’ at the top of the
column. In other words, the total width of the molecular band occuring at the
column top at the beginning of the-development process is smaller than, or
equal to, AL = AL'/a.

Remark 1. The quasi-static chromatographic process treated in the
earlier papers (/5-20) is a special case of chromatography when a
thermodynamic equilibrium is locally realized within any elementary volume
0V in the column and when the longitudinal molecular diffusion is carried
out, caused essentially only by flow heterogeneity (see Ref. 15, Introduction
Section). In this instance the ratio (Ry)s; of the migration rate of the
sample molecules to the migration rate of the solvent at any part of the
molecular band is equal to the partition B, of the molecules in solution
occurring in the elementary volume 8V existing at that part (see Ref. /5,
Introduction Section). It should be noted, however, that the migration rate of
the solvent in a 8V, in general, is different from the mean rate occurring in the
vertical column section in which the §V is involved. As a result, even when
By, or (Ry)sy is constant for any 8V, the ratio (R} ), of the migration rate of
the sample molecules in 8V to the mean migration rate of the solvent in the
column section in which 8V is involved is not constant, whereas it can be
assumed that the mean migration rate of the solvent in a column section is
constant for any section of the total column. This means that the ratio R of
the mean migration rate of the sample molecules in a vertical column section
to the mean migration rate of the solvent in the same column section (this
latter being constant for any column section; see above), in general, is not
equal to the mean value B of By, in the corresponding column section; these
are equal to each other only in the column section in which the mean part of
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the molecular band exists. This is because the molecular densities in different
8V’s within the same column section, in general, are different from one
another; this is the reason why longitudinal diffusion occurs caused by flow
heterogeneity.

Remark 2. In the theory in Refs. 15-18, the effect of the second type of
flow heterogeneity a priori is neglected. However, this theory treats the
special case of the quasi-static process when thermodynamic longitudinal
diffusion (being identical with thermal Brownian diffusion; see Ref. 15,
Discussion Section) is negligible in comparision with the diffusion occurring
due to the total flow heterogeneity (cf. Remark 1 above). If Assumption (¢) is
applied to the theory in Refs. 15-18, a conclusion is attained that the second
type of flow heterogeneity should also be negligible; this is because it
is the addition of Brownian diffusion and diffusion due the second type of
flow heterogeneity that behaves as an element of the chromatographic
mechanism. This conclusion is consistent with the assumption that a priori is
involved in Refs. 15-18 (see above; cf. the argument in Ref. 19).

B. Chromatography in the Absence of the First Type of Flow
Heterogeneity; Critical Width AL and Critical Volume AL’ at the
Column Top*

It would, in general, be possible to represent the thermal Brownian
diffusion coefficient (to which the effect of the second type of flow hetero-
geneity is added; denoted by D) as

D= Al¥7)/2r (1)

where 7 is a time interval, and A/ (t) is the mean-square-displacement of a
molecule occurring in 7. Equation (1) is called as an Einstein equation in the
case of thermal Brownian diffusion only. Due 1o Assumption (e) in Section
A, however, Eq. (1) would be valid even taking into account the effect of the
second type of flow heterogeneity, Equation (1) can be rewritten as

V Al Y1)/t = 2D/\/ Al¥(7) (1)
where the left-hand term would have a meaning of the mean migration rate of

a molecule occurring in a distance/ Al this rate decreases with an increase

in \/Al? (see Eq. 1'). Assumption (f) is Section A states that the rate

*Considerations made in both Sections B and C are partially originated in the considerations
made in Ref. 2/ and Appendix II in Ref. 22.
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v/ Al%/r is much higher than the mean flow rate |v,| of the solvent if
v/ Al is of the order of magnitude of the distance d between crystals packed

in the column. Let us estimate the distance \/ Al” occurring when VAl 2/t is
equal to | vy| . This estimation is easy; we have for the distance AL that is
twice as large as this distance:

AL = 40, (2)

where

®o=D/iVol (3)

has a dimension of length.

Our purpose here and in Section C is to represent an idealized chromato-
graphic process occurring in the absence of the first type of flow hetero-
geneity in terms of the fundamental continuity equation for the molecular flux
in the column. By solving this equation under a suitable initial condition, the
distribution in the total molecular density 2 in the column (i.e., the density
concerning both mobile and stationary phases) would be representable as a
function of both time ¢ (or elution volume V) and the longitudinal distance L
from the column top. We mention below, however, that provided (a) that the
molecular band with a width that is smaller than, or of the same order of
magnitude as, AL is initially formed at the top of the column [It should be
noted, however, that in the arguments below, the existence of the column top
plays a role of a sufficient condition. The argument below is valid provided a
narrow molecular band is initially formed at an intermediate position on the
column with or without the top. However, this column should definitively be
distinguished from the hypothetical infinite column without the top (see
Section C). For the argument in the presence of the first type of flow
heterogeneity, the existence of the column top is a necessary condition, since
it is only near the top of the column that the effect of the first type of flow
heterogeneity is negligible (see Sections D and E).] and (b) that the
longitudinal distance on the column where the center of the molecular band
migrates is still smaller than, or of the same order of magnitude as,I_{FAZ /2,
then it, in principle, is impossible to represent the molecular distribution 2 on
the basis of the continuity equation. Under this situation, the general initial
boundary condition to the continuity equation is inconceivable, Thus, due to
thermal Brownian motion of molecules (to which the effect of the second type
of flow heterogeneity is added), the partition B of the molecules in the mobile
phase occurs, whereas it is B that determines the mean mlgratlon velocity
voRF of the molecular band. voR- is equal to voB because R- is equal
to B(first principle of chromatography; Section A), and Bis equal to B [result



13: 42 25 January 2011

Downl oaded At:

702 KAWASAKI

arising from Assumptions (e)}~(h) in Section A]. On the other hand, again due
to the random Brownian motion of molecules (to which the effect of the
second type of flow heterogeneity is added), the initial distribution of the
molecules at the column top (occurring immediately after the sample load has
been finished) would be random. It can further be assumed that, while the
center of the molecular band migrates a distance that is smaller than, or of the
same order as, R-AL /2 or BAL /2, the molecules {which formed initially the
band with the width that was smaller than, or of the same order of magnitude
as, AL ) move almost at random, around their initial positions, a mean
distance that is larger than, or almost equal to, the migration distance of the
center of the band. [In the presence of the column top, however, the
probability of the migration of the molecules in the direction of the flow due
to Brownian motion (to which the effect of the second type of flow
heterogeneity is added) would be higher than the probability that they
migrate in the opposite direction.] As a result, the molecular distribution 2
still is random. A random general initial condition to the continuity equation
that finally produces a random general distributicn §2 is inconceivable.

We mention below, however, that if B is small, an initial boundary
condition to the continuity equation is conceivable. Thus, let us introduce a
critical width

AL = yAL = 4y, (4)

at the top of the column where v is a positive constant that is greater than, or
equal to, unity. The y value is of the order of magnitude of unity, however.
Now, if the partition B of molecules in the mobile phase is small, a large
volume of the solvent in comparison with the total interstitial volumes

AL = aAL (3)

within AL would pass AL while (almost) all molecules are eluted out of AL.
Under this situation, the amount of molecules that is eluted out of AL while a
volume of the solvent that is equal to AL’ passes would be virtually equal to
the mean amount of molecules that stay in the mobile phase in AL during this
time interval. This hypothesis, in fact, is representable in terms of an ordinary
differential equation, which should be solvable under conservation condi-
tions. The solution can be applied as a boundary condition to the
fundamental continuity equation (see Section C). The problem now is how
the parameter ¥ (Eq. 4) can be evaluated. This also will be considered in
Section C.
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C. Continuity Equation of Chromatography, Boundary Condition,
and the Solution of the Equation :

Modifying Eq. (1) in the earlier paper (15), the fundamental continuity
equation in the absence of the first type of flow heterogeneity can be written
as -

N o0
div; (voC — D grad, C) —_at_= 0 (6)

where

C = BQ (7)
represents the molecular concentration in the interstitial liquid (or the mobile
phase) in the column. Since

1 dv
_ — —— 8
]Vol Py dr (8)

where V is the elution volume, and since B is constant (Section A), Eq. (6)
can be rewritten, by using Eq. (3), as

020 on a0
oL"? JdL’ ow )
where
L' = aL (10)
W= BV (11)
and
6 = ab, (12)

L' (Eq. 10), with dimensions of volume, represents the sum of interstitial
volumes that are involved between position L and the column top; W (Eq.
11) has a physical meaning of the sum of interstitial volumes involved
between the column top and the position of the infinitesimal molecular band
occurring, provided there is no longitudinal diffusion. W, therefore, gives the
distance (expressed in units of volume) between the column top and the
mean part of the actual molecular band migrating on the column (see Ref. 15,
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Appendix III); W increases linearly with an increase in V' (Eq. 11). © (Eq.
12), with dimensions of volume, is a positive constant under both Assump-
tions (b) and (c¢) in Section A.

Provided the initial distribution

QW =0,L")= Q«L") (13)

is given on a hypothetical column with an infinite length that extends even to
minus values of L or L', then Eq. (9) has a solution

1 - : -
M= Wf Qo(L")e ' THLIHOW g (14
(W, L) =~ | QL") (14)

the derivation of which is shown for a more general case in the Appendix in
Ref. 20. Especially when

QL") = &(L") (15)

where & represents a delta function, Eq. (14) reduces to

1 , R
Qs (W, L') = ———¢" (L' "MW (16)

vV 4nrOW

On the other hand, on the basis of the consideration made in the last
paragraph in Section B, the boundary condition to Eq. (9) should be given as
a solution of the following differential equation:

dQ
-———=¢C (17)
d(V/AL')
or
dQ 1
—— =0 (17')
dW AL

Due to linearities in both Egs. (9) and (17), it is possible to give Q in Eq.
(17') not only the intensive meaning of the molecular density at position
L = AL on the column but also an extensive meaning of the amount of
molecules existing within the critical width AL (cf. the argument in Ref. 22,
Theoretical Section D). Under a normalized conservation condition

fmCdV=f”QdW==l (18)
0 0
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Eq. (17') has a solution

Q=—eMer (19)

which represents the boundary condition to Eq. (9) fulfilled at L' = AL’ (see
above). What we should do now is (a) estimate the value of AL', AL, or ¥
(Eq. 4), and (b) rewrite Eq. (19) into a form of Eq. (13); how the actual
situation where the column has a top can be consistent with the hypothesis
behind Eq. (13) that the column extends even to minus values of L or L’ will
also be considered.

The value of AL’ can be estimated on the basis of a hypothesis that, when
the center of the molecular band is far below the position L = AL on the
actual column, or when W > AL’, then the molecular density 2 observed at
L = AL (although it should be very low) should coincide asymptotically with
the hypothetical density at postion L = O on the infinite column occurring,
provided the initial molecular distribution is given by the delta function (Eq.
15). Under this situation, the total molecular band shouid have a very large
width; both the width AL and the initial width of the band within AL should
be negligible. In other words, they should be virtually infinitesimal. This

would mean that the right-hand side of
1 _wiar . e—-WiAL

AL’ W— e

and the extreme right-hand side of

lim Q; (W, L") - ¢~ W48 —— o~ W48
NIV W=
coincide asymptotically. It follows from this that
AL = 40 (20)
AL = 40, (21)
and
vl (22)

(see Egs. 4, 5, and 12).
Equation (19) can now be rewritten as
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QW 2 0, L’ = 40) = —= e"¥140
- 46
and (23)
QW <0,L'=40)=0

where the second equality has been added only for convenience’ sake. We
consider below the rewriting of Eq. (23) into the form of Eq. (13). Thus,
introducing a transformation

o= Qe|w—2(1;—49|/4é (24)

Eq. (9) can be rewritten as

Jw . 0w
ow 9oL (25)
Under any boundary conditions:
w(W=>0,L =40)=1/40 (26)
and
o(W=0,L <40)=1/20
o(W=0, L' = 40)= 1/40 (27)
and
o(W=0,L">40)=0
Equation (25) has the same solution:
w(W=0,L)= 1- erfc< u@—) (28)
40 40w

where

erfc (1) = \/Ln—f“e—“ du’ (29)

is called as a complimentary error function. On the other hand, by using Eq.
(24), Eq. (26) can be rewritten as the first equality in Eq. (23), whereas Eq.
(27) becomes
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. A 1 40y
QW =0,L' <40) = QL' < 40) = —z pll 740720

QUW=0,L"=40)=QyL' = 40)=1/40 (30)
and
QW =0,L">40)= QL' > 40)=0

This means that Eq. (30) (with the form of Eq. 13) is a boundary condition to
Eq. (9), which is equivalent to the boundary condition given by Eq. (23) (but
see below). By substituting Eq. (30) into Eq. (14), the solution of Eq. (9):

1 : . L — 46
UW=20,L")=—= e'”'"m’“w""@erffi(—:ﬁ—ﬁ—) 31
( : 40 Va4oOw (D

is obtained; Eq. (31) can also be obtained if Eq. (28) is substituted intoc Eq.
(24).

It should be emphasized, however, that Eq. (31) was originally derived
under the boundary condition given by Eq. (19) or the first equality in Eq.
(23), and not Eq. (30). From the physical meaning of Eq. (19) (see the last
paragraph in Section B), Eq. (31) has meaning only when L' = 4® or L =
40©,. Thus, writing

)
. 1 e : L' —40)

QW =0, L = 40) = — ol2l7 40)-W)/40 erfc(——A——

( )= %6 Vaew /

. 1 ,
Q(WZO,O<L’<4®)=—I:7e’W/L 5 (32)

QW=0,L"<0)=0

and

QW <0,L)=0 J

the first equality in Eq. (32) states that the part L' = 40 of the distribution
on the actual column with the top is identical with the corresponding part of
the distribution occurring on the hypothetical infinite column without the top.
On the hypothetical column, the distribution  even extends to minus L’
values (see Eq. 31). Further, provided B is small (the last paragraph in
Section B), Q in the first equality in Eq. (32) can also have the meaning of
the relative concentration C/B (see Eq. 7) of molecules in solution that have
just been eluted out of the column with length L [= L'/a (Eq. 10)]. L is larger
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than, or equal to, 4@0. In fact, when B is small, the volume of the solvent over
which a chromatogram appears is much larger than AL' = 46 (the last
paragraph in Section B). This means that the shape of the total chromatogram
is hardly influenced by the flow of molecules that proceed backward on the
column caused by thermal Brownian diffusion (to which the effect of the
second type of flow heterogeneity is added).

The molecular distribution © occurring in the part 0 <L < 4@, or
0 < L' < 40 of the actual column is indescribable due to the importance of
random motions of molecules (Section B). However, if the meaning of the
relative concentration C/B of molecules in solution that have just eluted out
of the column is given to £, the second equality in Eq. (32) can be derived on
the basis of the same consideration as in the derivation of Eq. (19) The last
two equalities in Eq. (32) have been added only for convenience’ sake.

Finally, in the extreme case when ©, or © tends to zero or when there is
absolutely no longitudinal diffusion, Egs. (23) and (30) reduce to

hnlOQ(W L'=40)= 11m Q(W, 0) = (W) (33)
9_.
and

Jim Q(W=0,L")= lim Qq(L') = 8(L") (34)

respectively; Eq. (32) reduces to

Jm W, L) = 8(L" = W) (35)

D. Chromatography in the Presence of the First Type of Flow
Heterogeneity; Continuity Equation and Some Assumptions for
Boundary Conditions

The fundamental continuity equation can be written, slightly modifying
Eq. (1) in Ref. 15, as

N on
div; (voC — DB grad; Q — D grad, C) +~a—t—= 0 (36)

where D is the diffusion coefficient for diffusion due to the first type of flow
heterogeneity, which is proportional to | vy| (see Ref. 15, Appendix III).
Therefore, introducing a positive proportionality constant ®, with a dimen-
sion of length, D can be represented as
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D = @, v, (37)
Corresponding to Eq. (9), Eq. (36) can be rewritten as

©+6 o _ o9 , o0 (38)
( oL "o T aw

where
0 = a0, (39)

is a positive constant with dimensions of volume (cf. Eq. 12).

Let us consider a boundary condition of Eq. (38). From its mechanism it is
reasonable to assume that the first type of flow heterogeneity cannot occur
near the top of the column (cf. Remark 1 below). This means that, near the
column top, the value of the parameter © tends to zero, and that Eq. (38)
reduces to Eq. (9); Eq. (23), which is the boundary condition of Eq. (9),
should be fulfilled at position L = 4@, even in the presence of the first type of
flow heterogeneity (cf. Remark 1 below). It would, therefore, be a good
approximation to apply Eq. (23) directly to Eq. (38). In order to solve Eq.
(38) under this boundary condition, it is necessary to rewrite Eq. (23) into a
form of Eq. (13). Unfortunately, however, this generally is not easy. This is
because, in order for the aspects in both parts L = 0 and L <O of the
hypothetical infinite column to be describable in terms of a common
continuity equation, the total diffusion coefficient occurring in the part L <0
should be D + D rather than D, so that Eq. (30) cannot be applied. We
therefore treat only the special case where longitudinal Brownian diffusion
(to which the effect of the second type of flow heterogeneity is added) is
negligible in comparison with diffusion due to the first type of flow hetero-
geneity (Section E; cf. Remark 2 below).

Remark 1. With thermal Brownian diffusion, the diffusion coefficient D
can be represented as

ANY(7) a? a a
= 2 = . == - (a)
T 2t T 2

s

where ANY(7) is the mean-square-displacement of a molecule occuring in a
time interval , and the first equality represents the Einstein equation (cf. Eq.
1). However, by using a mean-free-pass a occurring in a mean-free-time 7°,
Dy can also be represented as the second or the last term in Eq. (a); it is
assumed that the molecular collision occurs instantaneously. In the extreme
right-hand side in Eq. (a), a/t° represents the mean migration rate of a
molecule occurring in the free-pass. Equation (a) has a precise meaning only
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when 73> z° or when \/—A? > q. Equation (a) can be compared with the
case of diffusion occurring due to the first type of flow heterogeneity. Thus,
introducing positive constants

an_d
= 20/ | vq, (¢)

with a dimension of length and a dimension of time, respectively, Eq. (37)
can be rewritten as

D= (d)

"‘JIQI
1
N‘QI

It now is possible to give @ and ©° meanings of apparent free-pass and
apparent free-time of a molecule concerning longitudinal diffusion in the
column that is provoked by the first type of flow heterogeneity, respectively.
In parallel with the case of Brownian diffusion, it is only when the square-
root of the mean-square-displacement is larger than a that the parameter D
can have a precise meaning of the diffusion coefficient. Diffusion due to the
first type of flow heterogeneity with diffusion coefficient D, therefore, is
conceivable only at column positions where the distances from the column
top are larger than @ or 20,. It can be assumaed that the first type of flow
heterogeneity begins to decline when the distance from the column top
decreases to attain the order of magnitude of 2@,; at the column top, it
vanishes completely. Diffusion due to the first type of flow heterogeneity, in
general, is conceivable only when @, > @, since, unless @, > @, it cannot
be distinguished from diffusion due to the second type of flow heterogeneity.
This means that, at column position L = 40@,, the effect of the first type of
flow heterogeneity is negligible.

Remark 2. Equation (23) can also be applied with modifications to the
abstract continuity equation for gradient chromatography (see Introduction
Section). In this instance, due to the form of the continuity equation, it is
unnecessary to rewrite Eq. (23) (modified form) into an Eq. (13)-type
equation; the former can be used as a direct boundary condition to the
differential equation. As a result, a chromatogram can be calculated by
taking into account all effects of the first and second types of flow
heterogeneities, and thermal Brownian diffusion (19, 20).



13: 42 25 January 2011

Downl oaded At:

THEORY OF STEPWISE CHROMATOGRAPHY 711

E. The Case When Longitudinal Thermal Brownian Diffusion
(to which the effect of the second type of flow heterogeneity
is added) Is Negligible in Comparison with Diffusion Due to
the First Type of Flow Heterogeneity

This is the case similar to that treated in earlier papers (/15-18). Equation
(38) reduces to

o 00 _ 90 + 0N 40
oL'? oL’ oW (40)

It can be assumed that, at the top of the column, the first type of flow
heterogeneity is negligible, and that Eq. (23) is fulfilled (Section D). In the
absence of longitudinal thermal Brownian diffusion (to which the effect of the
second type of flow heterogeneity is added), however, Eq. (23) reduces to a
delta function (Eq. 33).

Now, in order for the hypothesis above to be realized, it is sufficient that
the relationships

lim Q(W, L'; @) = §(W) )
L'~+0
©—-+4+0

and ; (41)

f lim Q(W, L'; ©)dW =1
0

L' —=+0 )

be fulfilled, where the second equality represents a conservation condition
(cf. Eq. 18). Further, in order for Eq. (41) to occur, it is sufficient that the
relationships

1

lim QW >0, L"; @) = ———— ¢ #/40
L'-+o VvV 4TOW

and (42)

lim Q(W < 0,L; ®) =0
L'—+0

be fulfilled. Under the boundary condition given by Eq. (42), Eq. (40) has a
solution
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QW =0,L")= ﬁ o (L' —W¥aew

and (43)
QW <0,L)Y=0

where the second equality appears only formally.

The first equality in Eq. (43) shows that, at the beginning of chromato-
graphy when W—+0, a band of molecules with an infinitesimal width is
formed at the top (L' = 0) of the column. It also shows formally that, when
W >0, the band appears even in minus values of L'. It should be
emphasized, however, that Eq. (43) has been derived for the column with the
top occurring only when L' = 0, since Eq. {42) has been derived as a
sufficient condition for the occurrence of Eq. (33) or (23) (see above), and
Eq. (23) is concerned with the column with the top. An interpretation should
therefore be introduced that the part of the distribution Q) that formally
occurs in minus values of L' in Eq. (43) actually appears at the top (L' = 0)
of the column forming a band with an infinitesimal width. The intensity of
this band decreases gradually with the development process. At early stages
of the development process, the infinitesimal band remains at the column top
as part of the total band with a finite width.

In spite of the hypothesis that, in the part L <C O of the infinite column, the
diffusion coefficient should be D + D (= D) rather than D (= 0) (see Section
D), it is possible to solve Eq. (40) by using Eq. (34) (which has been derived
from Eq. 30) as a boundary condition. Here, again, the first equality in Eq.
(43) is obtained as a solution. This arises from another hypothesis that the
flow heterogeneity should not occur in the neighborhood [—0, +0] of the
position L = 0 on the infinite column, whereas Eq. (34) (derived from Eq,
30) shows that the initial molecular distribution occurs only in an infinitesi-
mal range [—0, O].

Remark. Earlier (Ref. 15, Appendix III), the first equality in Eq. (43)
was derived by using Eq. (34) (identical with Eq. A40 in Ref. 15) as a
boundary condition (see Eq. A34 in Ref. I5). In Fig. 8 in Ref. 16, two
theoretical chromatograms calculated on the basis of Eq. (A34) in Ref, 15
(i.e., the first equality in Eq. 43) are illustrated. In Ref. 15, however, it was
simply .assumed that the length of the column is infinity, extending even in
minus L values, and that the theory is valid only when the part of the
distribution £ occurring in minus L values is negligibly small, viz., when the
position of the molecular band is far below the column top. A new
interpretation for Eq. (A34) in Ref. 15 (i.e., the first equality in Eq. 43) has
been proposed above.
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NUMERICAL CALCULATIONS OF IDEALIZED CHROMATOGRAMS
IN THE ABSENCE OF THE FIRST TYPE OF FLOW HETEROGENEITY
AND DISCUSSION

Instead of considering probabilities 3 dW (Eq. 32) and 25;dW (Eq. 16)
occurring between the value W and W + dW of the parameter W (Eq. 11)
when the total interstitial volumes L' (Eq. 10) of the column is given, it is
more convenient to consider probabilities Q° dW,, and Q5 dW, occurring
between the value W, and W, + dW, of the parameter

Wo= Wia (44)

when the length L of the column is given. W, (Eq. 44) has a dimension of
length. Thus, by modifying Egs. (32) and (16), 2° and 25 can be written as

Q°( Wy>0,L = 4@0) _ { e[2(L—4é>0)—Wl]/4é0
40,

X f(L_4®°> (45)
T —
N\ Va0,
and
. 1
Q(Wy=0,0<L <40, = —L—e—Wo/L
and
1 2
QYW 2 0, L) = —m——= ¢ (" ¥0)*/4C0W0 46
s(Wo ) \/W (46)

respectively. Equation (45) represents Q° as a function of W, when the
length L of the column is given. W, is proportional to elution volume V since
B is constant (Theoretical Section A; see Eqs. 44 and 11). Provided the
partition B of molecules in solution in the column is small, 2° can, in general,
represent the normalized concentration (with respect to W) of molecules in
solution that have just been eluted out of the column (cf. the explanation of
Eq. 32 and below). Under this consideration, Eq. (45) can represent a
chromatogram for a column of length L.

Equation (46) is an approximate expression of Eq. (45) obtained by
assuming (a) that the length of the column is infinity extending even in minus
L values upward beyond the top, and (b) that the molecules are adsorbed
initially at position L = 0 of the infinite column, forming a band with an
infinitesimal width. The physical meaning of Eq. (46) (or Eq. 16) is different
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from the meaning of the first equality in Eq. (43) in spite of the same
mathematical form (but see below).

Figure 1 illustrates theoretical chromatograms for several different column
lengths calculated from both Eqs. (45) and (46). It is always assumed that
®,=0.005 cm, or that AL(= 40, = 0.02 cm (see Eq. 21; for this
assumption, see Ref. 20). Part (a) of Fig. 1, therefore, represents the case
when L = AL. It can be seen in Fig. 1 that the width in the chromatographic
peak increases with an increase in length L of the column due to molecular
diffusion. (Note the scale differences in the abscissa for different parts of the
figure.) It is only when L is extremely small that the chromatogram
calculated from Eq. (46) is considerably differer:t from that calculated from
Eq. (45). When L exceeds the order of magnitude of 1 cm (the usual
experimental condition), the coincidence of the two chromatograms is almost
complete (Figs. 1¢ and d). The approximate equation, Eq. (46), is useful for
practical purposcs.

The first equality in Eq. (43) has the same mathematical form as that of
Eq. (46) (or Eq. 16). This means that, if the parameter © is replaced by
©® + @, the first equality in Eq. (43) can represent an approximate
chromatogram in which account is taken of all the effects of the first and
second types of flow heterogeneities, and thermal Brownian diffusion. The
interpretation given to the first equality in Eq. (43) in the absence of
longitudinal Brownian diffusion (to which the effect of the second type of
flow heterogeneity is added; Theoretical Section E) can be applied even in its
presence, since the original mathematical form (Eq. 23)) of the boundary
condition (Eq. 33) that has been used for the derivation of Eq. (43) is
independent of the valuc of ®. When ®—+0, Eq. (23) tends to Eq. (33).

Equation (45) or (32) has been derived for a small B value (the last
paragraph in Theoretical Section B). However, the width in the molecular
band migrating on the column can be considered to be almost independent of
the B value. In fact, if Q° is considered as a function of longitudinal position
L on the column, W, represents the mean position of the band (cf. the
explanation of Eq. 11). Equation (45) shows that the width in the band
depends upon W, but that it is independent of B. With an increase in B,
however, the migration rate of the band increases, and the width in the
chromatogram (as a function of elution volume V) decreases. In contrast to
Eq. (45), Eq. (46) is fulfilled independently of the B value. It should be added
that, if B is large or close to unity, the adsorption of molecules on the crystal
surfaces does not occur, so that *“chromatography’ does not occur.

Remark. Equation (23) is also based on the assumption of a small B
value. In Remark 2 in Theoretical Section D it was mentioned that Eq. (23)
can be applied with modifications to the abstract continuity equation for
gradient chromatography. Gradient chromatography actually is used only for
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F1G. 1. Theoretical chromatograms in the absence of the first type of flow heterogeneity for
several different lengths, L, of the column, calculated from both Eq. (45) ( ) and the
approximate equation, Eq. (46) (- -). It is assumed that (:)0=O.005 cm or that AL (= 4@)0)
= 0.02 cm. Therefore. Part (a) represents the case when L = AL, (For details. see text.)
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molecules that are initially retained on the column since, unless this is the
situation, it is unnecessary to appiy the gradient. In order for the initial
molecular retention to occur, it is necessary that the initial B value at the top
of the column be close to zero, This means that Eq. (23) (in modified form) is
valid for any gradient chromatography.
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